STEP CLOSER TO ARTIFICIAL PHOTOSYNTHESIS

From Caltech: Caltech scientists, inspired by a chemical process found in leaves, have developed an electrically conductive film that could help pave the way for devices capable of harnessing sunlight to split water into hydrogen fuel. When applied to semiconducting materials such as silicon, the nickel oxide film prevents rust buildup and facilitates an important chemical process in the solar-driven production of fuels such as methane or hydrogen.

“We have developed a new type of protective coating that enables a key process in the solar-driven production of fuels to be performed with record efficiency, stability, and effectiveness, and in a system that is intrinsically safe and does not produce explosive mixtures of hydrogen and oxygen,“ says Nate Lewis, a coauthor of a new study published in the online issue of the journal the Proceedings of the National Academy of Sciences.

The development could help lead to safe, efficient artificial photosynthetic systems—also called solar-fuel generators or “artificial leaves”—that replicate the natural process of photosynthesis that plants use to convert sunlight, water, and carbon dioxide into oxygen and fuel in the form of carbohydrates, or sugars.

Lewis cautions that scientists are still a long way off from developing a commercial product that can convert sunlight into fuel. Other components of the system, such as the photocathode, will also need to be perfected. “Our team is also working on a photocathode,“ Lewis says. “What we have to do is combine both of these elements together and show that the entire system works. That will not be easy, but we now have one of the missing key pieces that has eluded the field for the past half-century.“

via Step Closer to Artificial Photosynthesis | The Energy Future.